个人介绍

发布者:娄朝刚发布时间:2020-05-13浏览次数:2766

娄朝刚    教授,博士生导师

出生日期:19681020日             办公室:显示中心316

电话:(02583794756838           传真:(02583363222

电子邮件:lcg@seu.edu.cn

通讯地址:南京市四牌楼2号东南大学电子科学与工程学院 

邮编:210096

个人经历

1986-1990    东南大学电子工程系学习,获学士学位

1990-1993    北京有色金属研究总院201研究室,助理工程师,从事薄膜方面的研究

1993-1998     北京金同源表面技术有限公司,工程师,从事薄膜的研究与开发

1998-2002     英国Aberdeen大学,从事薄膜生长的研究,获博士学位

2002-2003     英国Heriot Watt大学,博士后,从事半导体量子点生长的研究

2003-现在    东南大学电子科学与工程学院,从事太阳能电池、纳米光学薄膜、热电转换器件的研究

所教课程

硕士研究生课程“纳米电子器件”、“信息技术基础”

本科生课程“纳米材料与器件”

研究兴趣

一、光谱转换太阳能电池

电力是现代社会正常运转的基础,在目前全球气候变暖、环境污染日益严重的情况下,太阳能电池作为一种替代传统化石能源的可再生清洁发电技术受到了越来越多的关注。晶体硅太阳能电池是目前市场上最主要的电池种类,但由于受自身材料性质的限制,理论上的最高光电转换效率在30%左右。在影响其效率的因素中,长波光子与短波光子的能量损失是主要的原因。太阳光中波长超过1100 nm的长波光子不能被吸收,而短波光子虽然能被电池吸收,但也仅需1.1eV的能量就可以激发出光生载流子,多余的能量变成热而损失掉了。我们目前的研究希望通过光谱转换的方式,把太阳光中波长大于1100 nm的光子变为可以被吸收的可见光或近红外光子,把高能量的短波长光子变为波长较长、数量更多的可以被电池吸收的光子,从而让太阳能电池吸收更多的太阳光能量,提高其光电转换效率。

二、纳米光学薄膜

当前应用最广泛的传统光学薄膜是减反射薄膜(或叫增透膜),其应用领域包括光学组件、光电器件、太阳能电池等。为了改善传统减反射薄膜的性能,引入纳米结构是一个有效的手段。由于纳米结构特殊的光学和电学性质,常常会带来一些意想不到的结果。我们希望通过制备介质与金属的复合纳米阵列,利用散射与近场效应获得超低的表面反射率和超高的透过率。

三、热电转换器件

热电转换器件包括温差电池和热伏电池。温差电池是指利用材料两端的温度差来发电的器件,而热伏器件是与太阳能电池类似的利用红外光子发电的器件。这两种电池的作用都是将热转化为电。它们的最大优点是不需要光,可用于无太阳光的场合,因此具备很大的应用潜力。目前的主要问题是输出功率不大,且工作温度较高(常在200以上)。我们的目标是采用新的方法不断改善热电转换器件的性能,扩大其应用场合,使之成为实用的发电技术。

 

欢迎对以上研究方向感兴趣并且具有电子、物理、材料等专业背景的同学报考硕士研究生和博士研究生 (可以报考物理电子学和光学工程两个专业中的任一个,方向均为显示科学与技术),也欢迎已获得或即将获得博士学位的同学申请博士后。


近几年发表的论文  

1. Xiaojian Li, Chaogang Lou, Xin Li, Yujie Zhang, ZongKai Liu, Bo Yin, 2020, Bi2Te3/Si thermophotovoltaic cells converting low-temperature radiation into electricity, Physical Review Applied, 13, 041002

2. Xiaojian Li, Chaogang Lou, Xin Li, Yujie Zhang, ZongKai Liu, Bo Yin, 2020, Bi2Te3/Sb2Te3 thermophotovoltaic cells for low temperature infrared Radiation, Journal of Physics D: Applied Physics, 53, 035102

3. Santhosh Kumar Karunakaran, Chaogang Lou, Gowri Manohari Arumugam, Huihui Cao, Didier Pribat, 2019, Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors, Solar energy, 188, 45-50

4. Xiaodan Huang, Chaogang Lou, Hao Zhang, 2018, Experimentally demonstrating plasmonic lattice mode in periodic Ag nanoparticle arrays on quartz trapezoidal pillars, Journal of Physics D: Applied Physics, 51, 465101

5. Lu Li, Chaogang Lou, Huihui Cao, Han Diao, and K. Santhosh Kumar, 2018, Enhancing concentrator monocrystalline Si solar cells by down conversion Ce3+-Yb3+co-doped YAG phosphors, Applied Physics Letter, 113, 101905

6. Hao Zhang, Chaogang Lou, Xiaodan Huang, Xiaojian Yu, Hua Yang, Didier Pribat, 2017, A broadband antireflective nanostructure with Ag nanoparticles on SiO2 nanocolumns, Applied Physics Letters, 111, 201602

7. Santhosh Kumar, Chaogang Lou, A. Gowri Manohari, Huihui Cao and Didier Pribat2017Enhancement of the near-infrared emission of Ce3+–Yb3+ co-doped Y3Al5O12 phosphors by doping Bi3+ ions RSC Adv., 2017, 7, 24674-24678

8. Lu Li, Chaogang Lou, Xiaolin Sun, Yufei Xie, Lin Hu and K. Santhosh Kumar, 2016, Temperature Dependent Energy Transfer in Ce3+-Yb3+ Co-Doped YAG Phosphors, ECS Journal of Solid State Science and Technology, 5 (9) R146-R149

9. Guojian Shao, Chaogang Lou, Jian Kang and Hao Zhang, 2015, Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells, Applied Physics Letters 107, 253904

10. Guojian Shao, Chaogang Lou and Dong Xiao, 2015, Enhancing the efficiency of solar cells by down shifting YAG:Ce3+ phosphors, Journal of Luminescence 157344-348


                           

                                                    英文简历

                                                 Curriculum Vitae 

Chaogang Lou   professor

Birthday: Oct. 20, 1968

Office: Room 316, Display Research Center

Tel: +86-25-83794756-838

Fax: +86-25-83363222

Email: lcg@seu.edu.cn

Address: School of Electronic Science and Engineering,

SoutheastUniversity,

2# Si Pai Lou, Nanjing

210096, P. R. China

  

Experience

1986-1990     Department of Electronic Engineering, Southeast University, undergraduate

1990-1993     General Research Institute for Non-Ferrous Metals, Beijing, worked in novel thin films as an assistant engineer

1993-1998     Beijing Jintongyuan Technology Co. Ltd., work in thin film technologiesas an engineer

1993-1999     Aberdeen University, Ph.D. student with a research project in thin film theories

1993-2000     Heriot-WattUniversity, postdoctoral research associate working in quantum dots

2003-present  School of Electronic Science and Engineering, Southeast University, research interests include novel solar cells, nano-optical thin films, thermoelectric and thermovoltaic devices

  

Teaching duties

Graduate courses:          “Nanoelectronic devices” and “Information theory and Coding”

Undergraduate course:   “Nano-materials and Devices”

  

Research Interests

1. Up- and down-conversion solar cells

Today, electricity is essential to our daily life. However, the generation of electricity brings warming climate and polluted environment. Because of this, solar cells, as a kind of renewable energy technology, attract more attentions. Crystalline silicon solar cells are the most important photovoltaic devices in current market, but the bandgap of silicon limits the energy conversion efficiency of the cells to around 30%. The reason includes their inability to absorb the photons with wavelength longer than 1100 nm and low efficiency in utilizing the energy of short-wavelength photons. Our aim is to convert the long-wavelength photons and short-wavelength photons to visible or near infrared photons, and enable the solar cells to absorb more light and improve their performance.

2. Nano-optical thin films

Anti-reflection thin films are widely applied in many fields, such as optical components, optoelectronic devices, etc. To improve the films, nanostructures have been introduced for trapping more light. Recently, our group found that combining dielectric nanorods with metal nanoparticles gives a surprising result which gives a much lower reflection than conventional anti-reflection thin films and nanostructure arrays. We are working for understanding its mechanism and improve its performance.

3. Heat-electricity conversion devices

Heat-electricity conversion devices include thermoelectric devices and thermophotovoltaic devices. Thermoelectric devices can generate electricity by the temperature difference at two ends of materials. Thermovoltaic devices are similar to solar cells, and they generate electricity by absorbing heat instead of sunlight. Thermoelectric and thermovoltaic devices can work in the surrounding without sunlight, but both have a problem: they require a high temperature (like 200 or higher) for generating electricity, and this prevents them from being widely used. The aim of our research is to find a way to fabricate the devices which can work well at room temperature.

Welcome the students from electronics, physics and materials to contact us about further studies. The application for postdoctoral positions is also welcome.

  

Recent Publications

1. Xiaojian Li, Chaogang Lou, Xin Li, Yujie Zhang, ZongKai Liu, Bo Yin, 2020, Bi2Te3/Si thermophotovoltaic cells converting low-temperature radiation into electricity, Physical Review Applied, 13, 041002

2. Xiaojian Li, Chaogang Lou, Xin Li, Yujie Zhang, ZongKai Liu, Bo Yin, 2020, Bi2Te3/Sb2Te3 thermophotovoltaic cells for low temperature infrared Radiation, Journal of Physics D: Applied Physics, 53, 035102

3. Santhosh Kumar Karunakaran, Chaogang Lou, Gowri Manohari Arumugam, Huihui Cao, Didier Pribat, 2019, Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors, Solar energy, 188, 45-50

4. Xiaodan Huang, Chaogang Lou, Hao Zhang, 2018, Experimentally demonstrating plasmonic lattice mode in periodic Ag nanoparticle arrays on quartz trapezoidal pillars, Journal of Physics D: Applied Physics, 51, 465101

5. Lu Li, Chaogang Lou, Huihui Cao, Han Diao, and K. Santhosh Kumar, 2018, Enhancing concentrator monocrystalline Si solar cells by down conversion Ce3+-Yb3+co-doped YAG phosphors, Applied Physics Letter, 113, 101905

6. Hao Zhang, Chaogang Lou, Xiaodan Huang, Xiaojian Yu, Hua Yang, Didier Pribat, 2017, A broadband antireflective nanostructure with Ag nanoparticles on SiO2 nanocolumns, Applied Physics Letters, 111, 201602

7. Santhosh Kumar, Chaogang Lou, A. Gowri Manohari, Huihui Cao and Didier Pribat2017Enhancement of the near-infrared emission of Ce3+–Yb3+ co-doped Y3Al5O12 phosphors by doping Bi3+ ions RSC Adv., 2017, 7, 24674-24678

8. Lu Li, Chaogang Lou, Xiaolin Sun, Yufei Xie, Lin Hu and K. Santhosh Kumar, 2016, Temperature Dependent Energy Transfer in Ce3+-Yb3+ Co-Doped YAG Phosphors, ECS Journal of Solid State Science and Technology, 5 (9) R146-R149

9. Guojian Shao, Chaogang Lou, Jian Kang and Hao Zhang, 2015, Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells, Applied Physics Letters 107, 253904

10. Guojian Shao, Chaogang Lou and Dong Xiao, 2015, Enhancing the efficiency of solar cells by down shifting YAG:Ce3+ phosphors, Journal of Luminescence 157344-348